
COMP0213 Coursework: Using LLMs to
simplify human-robot interactions
Andrew Sanmori-Gwozdz1 and Hassan Shahzad1

1Department of Computer Science, University College London

ABSTRACT

The rigidity of robots is the first thing people notice. In Front of them lies a miracle in engineering and a
product of every advancement in engineering and computer science over the last 80 years and yet their
movement is too rigid; too robotic. We can easily distinguish between creatures and robots even though
both can appear to look similar and be of similar shapes. Why is this the case? It isn’t that robots lack
enough degrees of freedom or that their hardware isn’t up to date; these problems have been solved
countless times decades ago by great mechanical engineers. What lies at the heart of the problem is a
lack of advanced software to improve human robot interaction and help robots interact with the world.
Recent advancements in LLM’s have allowed for powerful language models to be run in the cloud and
be utilised to better bridge the gap between man and machine. Enabling the future of robots to longer
appear robotic in nature but lifelike, excelling in their ability to navigate the world in a manner we are used
to
Our paper proposes combining this new concept of LLM agents; those will the ability to perform tool
calling in the right order and sequence to complete a users query with robust SLAM techniques to
provide a low computational cost, accurate and robust means of transport and interaction for any ROS2
robot. A scalable and reproducible solution which we aim to offer can be implemented across numerous
autonomous robots to bring the robotics era one step closer

Keywords: LLM, LangChain, LiveKit, tool calling, SLAM

CONTENTS

1 Methods 2
1.1 First approach: LangChain . 2

Usage of tools with LangChain • Tools used • OOP structure

1.2 Second approach: LiveKit . 4
Usage of tools with LiveKit • Tools used

1.3 Simulation . 6
Modeling the Robots • Simulating the Robot • The relevance of ROS2 control

2 Results 11
2.1 LangChain and LiveKit Comparison . 11

Results for the LangChain LLM • Results for the LiveKit LLM • Tool chaining

2.2 Simulation results . 17
Mapping the robot with slam toolbox • Localizing with AMCL • Navigating inside the world • Using the Nav2 Simple
Commander API • Additional Services programmed

2.3 Overall Results with high level tools and ROS2 bindings . 24
Tool to take an image and save it • Tool to describe the contents of an image • Robot instructions

3 Full package Layout for a24 29
3.1 Nodes . 29
3.2 Launch Files . 30
3.3 Configuration Files . 30
3.4 Maps and World Files . 30
3.5 URDF and Mesh Files . 31
3.6 Visualizations . 31

3.7 Testing . 31

3.8 Miscellaneous . 31

4 Discussion 31

5 Contributions 31

INTRODUCTION
Our paper is divided into 2 overall sections. The first diving into how LLMs are capable of transforming
human queries into robot instructions, where we describe 2 different approaches we have taken: Langchain
and LiveKit, the first providing robust and reliable results but text based, and the second a method of
using cutting edge webRTC and LLM to get results enabling speech to speech interaction with the robot.
Section 1 will also feature an overview of our robots simulated in Gazebo and using ros2.

Section 2 shows the results we have obtained from our two approaches to LLM agents: LangChain
and LiveKit, interacting with a Gazebo environment of a home equipped with SLAM and mapping to go
from point A to B along with numerous other features like image recognition.

1 METHODS
We have taken two different approaches to human-robot interactions with LLMs and tool-calling. The first
one uses LangChain, a Python library that helps in developing projects that use LLMs. That would mean
”text to text” interactions. The second uses LiveKit, an open-source platform for user-AI interactions.
That would allow for ”speech to speech” interactions.

1.1 First approach: LangChain
We have first made use of the LangChain python library, which allows to add tools to a given LLM (we
used openAI’s ’gpt-4o’ model). The interaction with the user is text to text: the user writes down a query,
which is passed to the LLM, and the LLM then calls the correct tools to complete the query, as well as
answer the user.

1.1.1 Usage of tools with LangChain
Tools are functions that were written by a human prior to the program running, and that the LLM not
only has access to, but also understands (thanks to a provided description). In this first approach, we use
LangChain to connect tools to our LLMs (which we use openAI for).

Figure 1. Simple example of a LangChain tool

Fig.1 shows an example for a LangChain tool. This tool outputs a timestamp and takes no inputs. The
docstring is what the LLM uses to understand what the tool does, so clear explanations are very important.

1.1.2 Tools used
Our LangChain code uses 2 files for its tools. The first one, ros tools.py, is a collection of general use
ros2 tools that allow the LLM to execute a ros2 command, gather a list of all active topics, echo a given
topic, etc. Those tools are not ours, they were copied from the ROSA project (which aimed to give an
LLM ros and ros2 tools to control a robot).

The second file, ros robot tools.py, is a collection of tools (that we made ourselves) which we
estimated the LLM needed to perform the set of actions we wanted it to perform. There are tools to give
the robot any linear or angular velocity, stop the robot, or gather data on the current state of the robot.

2/32

https://python.langchain.com/docs/introduction/
https://github.com/nasa-jpl/rosa/

Figure 2. Tool for giving the robot any linear or angular velocity

Figure 3. Tool for listening to any active ros2 topic

3/32

1.1.3 OOP structure

Figure 4. UML diagram of the LangChain agent

In Fig. 4, the ’imported code’ section corresponds to classes belonging to external libraries: LangChain
and LangChain openai.

Class Gazebo agent inherits from Agent and is practically identical, except for its modified prompt
(where it is given a detailed description of the environment it is in, such as what information each ros2
topic can give), and its modified tools (it is given the tools that correspond to our Gazebo simulation).

Thus, Gazebo agent is the agent that was created to specifically interact with our Gazebo simulation,
and Agent is more of a generic agent. Agent can be used on different Gazebo simulations, provided its
prompt is changed to a description of the environment, and its tools are adequate to the tasks it is to
perform.

Figure 5. Modified prompt of Gazebo agent

1.2 Second approach: LiveKit
In this second approach, we have made use of LiveKit, an open-source platform for user-AI interactions.
Contrary to the first approach, this allows for speech to speech interactions with humans. More precisely,
we make use of a pipeline agent, which consists of a STT (Speech To Text), an LLM and a TTS(Text To
Speech). Thus, the audio query of the user will be converted into text, then plugged into an LLM which
has tools, and finally the LLM’s answer is converted back into speech.

Originally, we were hoping to replace that LiveKit LLM with our LangChain LLM, but it unfortunately
proved much more complicated than we though, and so we haven’t been able to use LangChain within
LiveKit.

4/32

https://livekit.io/

1.2.1 Usage of tools with LiveKit

Figure 6. Example tool of LiveKit

Fig.6 shows the same tool as Fig.1 except for the fact that it is now in a ’LiveKit format’. The function’s
docstring is still used as the description that the LLM uses.

”logger” can be ignored for now, it serves as a print statement in the terminal.

1.2.2 Tools used

The tools used for the LiveKit LLM are very similar to the tools used for the LangChain LLM. We simply
copied the tools we developed and adapted them to the correct ”LiveKit format” for the LiveKit LLM to
be able to use them.

Figure 7. Tool for giving the robot any linear or angular velocity, for LiveKit

5/32

Figure 8. Tool for listening to any active ros2 topic, for LiveKit

It is important to note that we have not copied all of the LangChain tools over to LiveKit, as many of
those tools are not vital to the robot functioning. This is especially true for the ros tools.py tools from
ROSA, as they were developed for user queries regarding the state of the current ros2 framework, whereas
our aim was for a simpler LiveKit agent.

1.3 Simulation

1.3.1 Modeling the Robots

In this project we simulated 2 robots: namely A24 and OpenBase2. Both robots are custom made and not
available for public use. This meant an additional step is needed before we can use these robots within
our simulation and that is creating the URDF/xacro file.

The URDF file stands for unified robotics description format. It is a xml file used to describe a robot
by its links joints and transforms between them. There are additional tags like inertia and collision which
are required by simulation software to accurately model the robot in real life. The problem is that for
any physical robot, the design of the links can be very difficult to model and code by hand. Especially
measurements like the Inertia tensor and the center of mass for each link must be done computationally.
The solution to this is to use some software to go from your accurate CAD assembly model of the robot to
the URDF. Both robots were modeled in Fusion 360 and a plugin called fusion2urdf was used to go from
my file to urdf.

After getting the urdf we can view it in RViz by running the built in robot state publisher node in
ROS2 and optionally the joint state publisher to update the transforms if there are any desired changed
to the joint angles.

6/32

(a) View 1 (b) View 2

Figure 9. Robot A24

(a) View 1 (b) View 2

Figure 10. Robot OpenBase2

The generated URDF file also includes data for the inertia values that can be used to accurately model
the robots properties.

Figure 11. URDF file

Meshes are used in places of simple shapes to represent complex geometries

7/32

1.3.2 Simulating the Robot

To bring the robot into the Gazebo simulation with the ROS2 bindings we use the gazebo ros bridge.
Gazebo is a standalone piece of software like other simulation engines however bindings to ROS2 can be
installed to provide easy control of the robot.

We can also further modify our URDF file by replacing it with xacro, enabling things like macros
and better control over our robots description and add gazebo tags to the model. These tags allow us to
change the friction of each link to better match the real world and simulate sensors like cameras, depth
cameras and 2d lidars. All of which ill be used within the robots

Figure 12. Links like the castor wheel have a low friction to slide easily along the surface

Figure 13. The wheels are modeled with a frictional coefficient of 1 along both axis to reduce wheel
slippage leading to a more accurate odometry which will be discussed later

A world file of a home is also loaded in. This file was developed by the team at AWS robomaker and
was chosen due to its rich variety of objects and resemblance to an environment these robots may one
day be in. The feature complexity within the world also makes it better for SLAM and the open spaces
between rooms give us a mixture of spaces to test the robots performance

8/32

Figure 14. A24 in a house environment

Figure 15. House environment

1.3.3 The relevance of ROS2 control
ROS2 control is a software package with a variety of useful applications. Although there was a steep
learning curve to fully learn everything the stack had to offer, it is incredibly beneficial for scaling the
robots and shortening development time in the long run. The biggest benefit for me with ROS2 control is
its innate Sim2Real capability. Once a robot has been fully developed in ROS2 with ros2 control, simply
by swapping the hardware interface to one that can communicate with the necessary hardware on the
robot that the physical robot can come to life

Why this is relevant here is that ros2 control comes with a gazebo hardware interface so that joint
movements in Gazebo can also update the joint states of the robot and any command given to the robot
feeds forward into the simulation.

Here we add to the xacro file for the robots with Fig.16:

9/32

Figure 16

It is saying that there are 2 joints that we need to control. One for the right wheel and for the left. Each
joint has 1 command interface being velocity and 2 state interfaces being position and velocity. Limits
have also been set.

Our 2 wheeled robot has kinematics which translate some desired linear and rotational velocity into
angular wheel velocities. While the math is not complex, ros2 control provides a controller called the diff
drive controller which given the parameters for our robot can compute the necessary angular velocity the
wheels must be at.

10/32

Figure 17

There is also another controller called joint state broadcaster and that is responsible for updating the
transforms for the robot given changes in the joint states. All the controllers are running at 50hz which is
reasonable enough to provide accuracy and not overload the system given all the other nodes running.

2 RESULTS
2.1 LangChain and LiveKit Comparison
2.1.1 Results for the LangChain LLM
The LangChain LLM is successful at understanding user queries, correctly using the right tools, and
answering the user.

Figure 18. LLM successfully answering ”go forward” query

For a full breakdown of Fig.18 above: we can first see the user query on line 3 (”go forward”). Then
the LLM, in response to the query, calls a tool (green text : Invoking: ’give robot velocity’ with ’{’xlinear’
: 1.0}’) which is the tool responsible for giving the robot a linear or angular velocity. ’{’xlinear’ : 1.0}’
corresponds to the parameters passed to the tool. Here, it means the robot will start moving with a velocity
of 1.0 m/s along the x axis. Right after that, the gray text which starts by an arrow (ros2 topic pub ...)
corresponds to the command that the tool executed in terminal. Finally, the blue text corresponds to the

11/32

output of the terminal command and the final green text corresponds to the LLM’s answer to the query:
The robot is now moving forward with a linear velocity of 1.0. It confirms that the robot has indeed
completed the query successfully.

Figure 19. LLM successfully answering ”stop” query

Similar to Fig.18, Fig.19 shows the user query (stop) followed by the tool used (stop robot, with no
parameters). We can also see the terminal command in gray as well as the LLM output in green (the
second green line), which confirms the successful stop of the robot, as per requested by the user.

We can see that Fig.19 shows the LLM called a ”stop robot” tool, when the terminal command looks
identical to the give robot velocity tool with all 0 velocities. Indeed the stop robot tool is identical to the
give robot velocity tool for all 0 velocities, but testing has proven that the LLM will stop the robot much
more reliably if it has a tool specifically for it. We thus decided to add a theoretically useless tool to not
only improve performance but also safety (real robots need to be able to stop any current action quickly
and reliably at any moment if they start behaving unexpectedly).

Figure 20. LLM returning coordinates to ”where are you” query

In Fig.20, the LLM is asked the position of the robot (”where are you”). To answer this query, the
LLM uses the ros2 topic echo info tool, which echoes(reads) a given ros2 topic, and then feeds the result
to the LLM. Here, the topic echoed is /odom, which corresponds to the robot’s odometry (the position of
the robot calculated from encoders on the wheels, it isn’t its true position).

The pink text corresponds to the information returned by the ros2 command to the LLM: it is one
echo from the /odom topic. Finally, the LLM answers the query with the green text by clearly displaying
the X, Y and Z coordinates of the robot.

12/32

Figure 21. Full conversation for the examples given

In Fig.21 above, we can see the entire conversation user/LLM for the set of examples we have
showcased in figures 18, 19 and 20.

2.1.2 Results for the LiveKit LLM

Similarly to the LangChain LLM, the LiveKit LLM is successful at understanding user queries, correctly
using the right tools, and answering the user.

However the big difference between our LangChain and LiveKit approach is that LiveKit is speech to
speech: a python file is executed in terminal, and the user can enter a virtual room and speak with the
LLM (if the python file isn’t running, the virtual room will not work). Another benefit of LiveKit is that
the virtual room can be run on a separate device, like a smartphone.

13/32

https://secure-syscall-2e6768.sandbox.livekit.io/

Figure 22. LLM successfully answering ”make the robot move forward” query

For a full breakdown of Fig.22: the first line, python3 hagent.py dev, runs the python file responsible
for the LiveKit code. Then, the first 10 or so lines correspond to the virtual room and worker(the AI)
starting up. From that point onward, the speech to speech user-LLM conversation starts with the message
Hey, how can I help you today?, which is the line right above the line underlined in red.

Underlined in red is the user query: Make the robot move forward. In response to the query, the LLM
calls the give robot velocity tool, underlined in blue. We can see two different calls as the first one is the
LiveKit agent reporting that it is using a tool (the first one) and the second one is due to a print statement
that we added (the ”logger” mentioned in Fig6 and visible in Figs.7 and 8), to make it easier to see when
the agent uses a tool. Finally, underlined in green, is the LLM’s answer to the user (which is transformed
into speech for the user in the virtual room).

Figure 23. LLM successfully answering ”stop the robot” query

Fig.23 shows the result of a stop the robot query (red), to which the LLM calls the stop robot tool
(blue). The robot successfully stops, and the LLM answers the user (green).

This is identical to the same test performed with LangChain (Fig.19).

14/32

Figure 24. LLM successfully answering ”What are the coordinates of the robot?” query

Fig.24 shows the result of a What are the coordinates of the robot? query (red), to which the LLM
calls the ros2 topic echo info tool (blue). The output of that command isn’t written down in the terminal
we’re looking at, unlike in the LangChain example (Fig.20) but the LLM still has access to it as we can
see in its answer (green) with the correct coordinates.

Figure 25. Full conversation of the above examples

Fig.25 corresponds to the full user-agent discussion used for the examples discussed in figures 22, 23
and 24.

2.1.3 Tool chaining
Both the LiveKit approach and the LangChain approach we have used work well. In both cases the
LLM understands the user’s query and calls the correct tools for the task at hand. The biggest difference
between both approaches is that LiveKit allows speech-to-speech interactions whereas LangChain is only
text-to-text.

However, extensive testing of both approaches has proven that there is a big difference in how both
agents can use tools: the LangChain agent has shown to be much better at completing queries that required
multiple tools.

Consider the following example:

Each agent has access to 2 tools: get time(), which returns the total number of seconds which have
passed since epoch (01/01/1970); and timestamp convert(), which converts that number of seconds into a
human readable format, such as ”11-02-2024 13:43:26”.

If those agents were then queried ”What time is it?”, they would first have to call get time(), then pass

15/32

the output of that tool as input to timestamp convert(), and finally read the output of that tool to be able to
answer the query.

For simplicity of notation, let’s call the action of using multiple tools which each need the prior tool’s
outputs as inputs ”Tool chaining”. Thus, here we have a chain of 2 tools.

Our LangChain agent has proven to be capable of tool chaining, contrary to our LiveKit agent, severely
limiting how much it is capable of doing.

Figure 26. The tools the LangChain agent has access to

Figure 27. LangChain agent successful tool chain

Fig.27 shows the agent chaining tools, using the tools from Fig.26. It first calls get time (first green
text), which outputs a timestamp (blue). Then, the agent uses this timestamp output as an input for another
tool, timestamp convert. This returns the date and time (in yellow), which the LLM reads to answer the
user (last green text).

16/32

Figure 28. Tools the LiveKit agent has access to

Figure 29. LiveKit agent unsuccessful tool chain

Similar to Fig.27, Fig.29 shows the LiveKit agent attempt tool chaining, using the tools in Fig.28.
Underlined in red is the user query (What day is it today?). The agent tries to answer the query by

first calling the get time tool (underlined in blue). After that, the agent seems to freeze: it is unable to
answer the query because it is unable to chain tools.

These results show that the LiveKit approach allows for speech-to-speech interaction but has limited
functionalities as far as converting queries into robot instructions go. On the contrary, LangChain only
supports text-to-text but it is capable of tool chaining: this means, provided it has access to basic tools, it
could perform very complex actions by chaining up several simple tools together.

2.2 Simulation results
2.2.1 Mapping the robot with slam toolbox

Before we can get our robot navigating inside the world, we must first generate a map through which
it can later localise and navigate autonomously. The most popular approach is to use a ROS2 package
called slam toolbox which as the name suggests, performs SLAM. It only needs to subscribe to the /scan
topic which our 2d lidar is publishing to and the necessary transforms are made.

17/32

Figure 30. Operation order of our robot

There are 2 main choices for performing mapping with slam toolbox: online async and online sync
launch

Online async is an asynchronous mapping algorithm that only uses the most recent /scan data to
generate the map. It works well in resource constrained environments where some messages may be lost
and has lower latency than the synchronous slam

Online sync slam is the opposite. It uses all the scan data even if the message received is old. This
can in turn make a more accurate map however depending on the speed of the robot and how resource
constrained the system, also make a worse map and take too much computation leaving less time for other
tasks.

For our setup we went with the first choice: online async launch due to our computers not being that
powerful.

In order to map out the world i drive around my sending Twist messages to the /cmd vel topic. This
is a vital part of how the vast majority of mobile robots move around. A twist message is composed of 2
vectors, 1 for the linear and the other angular. Each vector has 3 elements: velocity about the x,y and z
axis. Hence a Twist message can fully represent the state of some object in 3d space.

In practice we only utillize 2 of the values and leave the rest set to 0. We use the values linear.x and
angular.z

This means we can drive the robot forward with some velocity (can be negative) in metres per second
and revolve it around the robots z axis in radians per second.

After driving the robot around the house a few times we were able to generate the map in Fig.32 from
the environment in Fig.31.

Figure 31. Real environment

18/32

Figure 32. Mapped environment

Now this map being generated is being published to the /map topic, however if we were to close this
program then the map would disappear and we would have to generate it again. In order to save the
map we run the command: ros2 run nav2 map server map saver cli -f name of map This will save
the map in the directory we ran the command in. It generates 2 files which are a map name.pgm and
map name.yaml.

These 2 files must be inside the same directory of the same name for the map to be reused. The pgm
file can be thought of as the raw uncompressed, unserialized data for the map. It is a 2d occupancy grid
of 3 states: definitive occupied (when the probability it is occupied is above the threshold), definitive
unoccupied and uncertain. The threshold values along with data about the maps centre is stored in the
yaml file.

Figure 33. Another environment mapped

2.2.2 Localizing with AMCL
Now that a map has been generated and saved to the maps folder of the package, we can begin trying to
localise the robot within the map. A technique called AMCL short for Adaptive Monte Carlo Localization
is employed to do this.

19/32

In order for ROS2 to have access to the map we run nav2 map server map server and specify the
yaml file for the map we generated and this will load the map.

Then we run ros2 launch nav2 amcl amcl in order to localize. The important thing is that we must
first set an initial pose. This tells AMCL where we think the robot is on the map. If we select a initial pose
on the map that is far off its true value then the quality of the localization will suffer but over time resolve
itself. If we choose a good guess for the initial pose then our localization will also be good because our
odometry is accurate.

It is time to mention what odometry is and its relevance in autonomous mobile robots. Odometry is
where the robot thinks it is in the world. It can be calculated by integrating over the robots wheel encoders
or performing position tracking on a robots IMU if it has one. There are also techniques like visual
odometry and laser odometry which estimate how far a robot has been displaced simply by observing
sensor data.

The key problem is that odometry drifts and quickly strays from its true value. It can be caused by a
multitude of reasons but for wheeled mobile robots, the key culprit in wheel slippage between the ground.
This causes the robot to think it has traveled further than it actually has. This is especially a problem in
areas that have slippage like carpeted rugs and transitioning between different textured surfaces.

Once we have set the initial pose we can begin driving the robot around manually and observe how
far the transform between map and odom is. The further it is, the more the SLAM software is trying to
correct the odometry and the closer it is, the more reliable the localization.

(a) (b)

Figure 34. Odometry and map transforms close to one another

2.2.3 Navigating inside the world

Now that we can localise the robot inside the map, the next step is to make the robot navigate. In the
previous stages we manually published twist messages to the robot however now the software will send
the commands by itself to follow a path that it generates.

To do this I use the nav2 stack and run the following launch file ros2 launch nav2 bringup
navigation.launch.py along with specifying a parameters file to configure the behaviour of the navigator.

After setting the initial pose of the robot, we can send a goal pose and the robot will try to get to that
match that pose. The pose consists of a point in x,y,z along with a quaternion to represent the angles. A
quaternion is used because it is more computationally efficient than euler angles.

20/32

Figure 35

Figure 36

2.2.4 Using the Nav2 Simple Commander API

In order to interact programmatically with the nav2 stack we can use an api which greatly speeds up the
complexity of programming autonomous robots to follow waypoints and complete missions.

The basic layout is as follows:

21/32

Figure 37. Set the initial pose

Figure 38. Go to global pose

The function create pose stamped is responsible for generating the correct pose given only a desired
x,y coordinate and rotation around the z axis in radians

Using these 2 nodes, we can move the the robot to any unoccupied space in the map and even enabling

22/32

motions like spinning on the spot by altering the goal theta. This provided a higher level of control for the
agent which other mobile robots controlled by LLM’s do not have.

2.2.5 Additional Services programmed

In ROS2 we not only have nodes and launch files but also services and actions. The service in particular
is incredibly useful for this project since it is a function that takes in some inputs and returns an output in
one go, not constantly like how nodes typically work. This can be used to perform tasks inside ROS2 like
check if a coordinate on a map is occupied or what the distance measurement is from the depth camera for
a given x,y pixel. That’s exactly what has been implemented. We made the following services in ROS2 to
give the LLM agent a higher level of control over ROS2 and give it more insight.

• IsOccupied

• Take image

• Coord 2 depth

The first service sees if the robot can actually go to the point the user asks to go to. It returns 2
booleans: one to indicate if the command to check has gone through and the second to actually determine
if that coordinate is occupied or not with a True or False value. There is a custom srv message to go along
with this service:

(a) (b)

Figure 39

23/32

Figure 40. The takeImage service takes an image of what the camera sees and saves it as .png for other
functions/tools to use

The next service is coord 2 depth. This is used to find how far a RGB pixel is in the depth image.
While this service provides low level inference from the ROS2 system, if coupled with more advanced
computer vision or other advanced tools, it could be used to go to towards items within the house

2.3 Overall Results with high level tools and ROS2 bindings
To finally merge the work done with LangChain with this ROS2 package, we create 6 distinct tools which
can be used to effectively interact with the simulated world.

Figure 41. Function used to execute a ROS2 command

The following function executes a ROS2 command in terminal using the subprocess function. It first
validates it to make sure this is a valid ROS2 command by splitting the message and performing a basic
syntax analysis.

24/32

Figure 42. Tool to move the robot to some Nav2 goal pose

This tool moves the robot so some point on the map with a desired pose denoted by an agle theta
about the z axis.

When calling the tool using the LLM we got the following results:

Figure 43

Figure 44. query

Figure 45. query results

25/32

Figure 46. robot going to the goal

Figs.44, 45, 46 show the robot being queried to go to x=1, y=2, with 30 degrees orientation and
succeeding in answering that query.

Figure 47. Tool to check if the map is occupied

This tool publishes a service call to our custom service and gets the results. This tells if the robot can
even go to the point the user says to go to. Improving the reliability of the system. Here are the results:

Figure 48

As you can see it first checks if the coordinate is occupied before attempting to go there. We did not
have to explicitly mention to check if it is occupied, the robot did so by itself.

2.3.1 Tool to take an image and save it
In order to save what the robot is seeing in its camera, another tool is developed which takes an image.
The output is an image.png file saved in a folder called images for other functions to have access to it

26/32

Figure 49. The tool use the custom service responsible for taking an image based on a trigger message.
It returns if the image has been taken successfully

2.3.2 Tool to describe the contents of an image

This tool is essential and has 2 parts to it. On one side we made a python function saved in a separate
file. This function uses the OpenAI API to take describe an image and just return the string of the image
contents:

Figure 50. As you can see we just ask the LLM “what is in this image” and return only the relevant
parts of its response

27/32

Figure 51. The take image tool accesses the image taken by the previous tool and then passes that path
to image into the function and returns the response

Here are the results for the tool:

Figure 52

Figure 53. Image contents being described correctly

Finally the last higher level tool made was to find how far a pixel is in the depth camera:

Figure 54. Tool for depth of image

This tool also uses our custom service and returns the distance the tool gives us here are the results for
the tool:

28/32

Figure 55. results

We drove the robot before calling the next tool so the distance changed. Small changes in the value
are normal to due the dispersion within the depth camera. As you can see all the values are to 3 significant
figures, as requested by the tool:

Figure 56

2.3.3 Robot instructions
The Robot system prompts are vital to getting your robot to behave we intended and imitate the personality
you set it out to have. For our robot we put the following:

Figure 57. robot prompts

The robot system prompts are straight forward and make sure that the robot is well aware of what it
can and cannot do

3 FULL PACKAGE LAYOUT FOR A24

The a24 ROS 2 package is designed for voice-to-action interaction, leveraging SLAM Toolbox, the Nav2
stack, and the Rosa software. Below is an overview of the package’s layout, focusing on nodes, launch
files, configurations, and other relevant components:

3.1 Nodes
• Voice-to-Action Nodes:

– coord 2 depth.py: Converts coordinate data to depth values.

– go to goal.py: Handles navigation to a specific goal location.

– initial pose goal.py: Sets the initial pose of the robot for localization.

– nav2 initial pose.py: Integrates Nav2 stack for setting the robot’s pose.

29/32

– isOccupied.py: Checks if a specific map location is occupied.

– remapper.py: Remaps topics or data for compatibility between components.

– take image.py: Captures images, possibly for debugging or perception.

– waypoint follow.py: Implements waypoint-based navigation for the robot.

• Agent Code (Integration with LangChain and LiveKit):

– LangChain-based tools and agents are structured in agent code/langchain agent,
providing language-driven control and task automation using tools like agent OOP.py and
ros tools.py.

– LiveKit agents in agent code/livekit agent include agent livekit.py and
other supporting files like livekit tools ros.py, enhancing ROS2 and voice interac-
tion integration.

• Rosa Integration:

– rosa code/a24 tools.py and rosa code/image describer.py provide tools
for interpreting images and managing Rosa-related functionality.

3.2 Launch Files
The launch files, located in the launch directory, orchestrate the package’s subsystems:

• SLAM and Navigation:

– amcl.launch.py: Launches the Adaptive Monte Carlo Localization (AMCL) stack.

– cartographer.launch.py: Initializes Cartographer for SLAM-based mapping.

– navigation.launch.py: Sets up Nav2 for navigation.

• Simulation and Real Robot Operation:

– simulation.launch.py: Configures the simulation environment, including Gazebo.

– real.launch.py: Sets up the package for operation on a physical robot.

– rsp.launch.py: Launches robot state publisher for URDF publishing.

3.3 Configuration Files
Located in the config directory, these YAML files provide parameters for critical functionalities:

• Navigation: nav2 params.yaml configures the Nav2 stack.

• SLAM: mapper params.yaml defines parameters for SLAM Toolbox.

• Controller Settings: controller.yaml specifies robot control parameters.

3.4 Maps and World Files
• Maps (in maps directory):

– cones.pgm and cones.yaml: Map and metadata for a cones environment.

– home.pgm and home.yaml: Map and metadata for a home environment.

• Worlds (in worlds directory):

– cones.world: A Gazebo simulation world for navigation testing.

– home.world: Simulated home environment.

30/32

3.5 URDF and Mesh Files
• URDF Models (in urdf directory):

– Includes robot description files for simulation (a24 sim.xacro) and real operation (a24 real.xacro).

– Sensor-specific files like depth camera.xacro and lidar.xacro.

• Meshes (in meshes directory): 3D models of robot components, such as wheels, motors, and the
base.

3.6 Visualizations
• RViz Configuration (in rviz directory):

– Visualization setups for various scenarios: amcl.rviz, cartographer.rviz, and
navigation.rviz.

3.7 Testing
• Unit Tests (in test directory):

– Scripts like test flake8.py and test pep257.py ensure code quality and adherence
to standards.

3.8 Miscellaneous
• Simulation Parameters: gazebo/gazebo params.yaml for Gazebo simulation settings.

• Agent Integration: The agent code directory facilitates advanced AI and task management
with external libraries and frameworks like LangChain and LiveKit.

• Images and Models: Placeholder for additional resources or assets in images and models
directories.

This layout supports a modular design, allowing seamless integration of voice commands, SLAM,
and navigation functionalities.

4 DISCUSSION
As discussed in section 2.1.3, our LiveKit approach and our LangChain approach each have their own
strengths and weaknesses: LiveKit supports speech-to-speech but not tool chaining, and LangChain is
text-to-text but does supports tool chaining.

Both approaches have been capable of transforming human queries into function calls, thus greatly
simplifying the interactions between the user and the simulated robot. We have succeeded in our objective
for this project, but we believe this subject has more potential than what we have covered here. We were
limited by the report’s deadline, but had we had more time, we could have tried using our LangChain and
LiveKit agents on a real robot.

5 CONTRIBUTIONS
1 Methods:
1.1 First approach: LangChain

• research: 50/50 (equal contributions from both authors)

• agent python files: Andrew

• tools: Andrew

1.2 Second approach: LiveKit

• research: 50/50

31/32

• agent files: 50/50

• tools: 50/50

1.3 Simulation

• all Hassan

2 Results
2.1 LangChain and LiveKit Comparison

• Andrew

2.2 Simulation results

• Hassan

2.3 Overall Results with high level tools and ROS2 bind

• Hassan

3 Full package Layout for a24

• Hassan

Project overall: 50/50

ACKNOWLEDGMENTS
Once again, this report was made possible by LangChain, LiveKit, and the ROSA project.

32/32

https://python.langchain.com/docs/introduction/
https://livekit.io/
https://github.com/nasa-jpl/rosa/

	Methods
	First approach: LangChain
	Usage of tools with LangChain
	Tools used
	OOP structure

	Second approach: LiveKit
	Usage of tools with LiveKit
	Tools used

	Simulation
	Modeling the Robots
	Simulating the Robot
	The relevance of ROS2 control

	Results
	LangChain and LiveKit Comparison
	Results for the LangChain LLM
	Results for the LiveKit LLM
	Tool chaining

	Simulation results
	Mapping the robot with slam_toolbox
	Localizing with AMCL
	Navigating inside the world
	Using the Nav2 Simple Commander API
	Additional Services programmed

	Overall Results with high level tools and ROS2 bindings
	Tool to take an image and save it
	Tool to describe the contents of an image
	Robot instructions

	Full package Layout for a24
	Nodes
	Launch Files
	Configuration Files
	Maps and World Files
	URDF and Mesh Files
	Visualizations
	Testing
	Miscellaneous

	Discussion
	Contributions

